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Abstract

Music has a considerable influence on human physiol-
ogy and can modulate listeners’ blood pressure (BP), ECG
and respiration. Here, we study the predicting of systolic
and diastolic BP from physiological signals, and the ef-
fect of music on the predictions. ECG, respiration, and
BP were acquired simultaneously during music listening
following an initial silence baseline. With SBP and DBP
as target variables, we perform regression analysis using
a graph attention network (GAT). Physiological signals
form the nodes in the graph, the music heard establish the
edges, and music features constitute the edge attributes.
Comparison of loss curves during baseline silence with
that during music showed that music listening (with music
features as GAT edge attributes) improved both SBP and
DBP prediction. The regression values were 0.64 (SBP)
and 0.61 (DBP) in the presence of music vs. 0.39 (SBP)
and 0.36 (DBP) during silence. The mean absolute er-
ror (MAE) was 2.78 (SBP) and 3.58 (DBP) and RMSE
was ±3.01 (SBP) and ±3.59 (DBP) while listening to mu-
sic. On average, SBP and DBP predicted from physiology
during music listening, with music features, reduced the
MAE by 29.3%, showing that music engagement can en-
hanced hypertension diagnostic accuracy. The benefit of
music-induced physiological changes for predicting SBP
and DBP demonstrates music’s utility in precision hyper-
tension diagnostics.

1. Introduction

Music impacts human physiology via the autonomic
nervous system [1]. Research shows that music affects
physiological variables like heart rate, respiration, blood
pressure (BP) [2], evidence of its potential for use in pre-
cision diagnostics and digital therapeutics [3].

Hypertension is the prime risk for cardiovascular dis-

ease (CVD). Early diagnosis of hypertension allows for
timely interventions to prevent CVD. A goal is to enable
hypertension detection from physiological signals obtain-
able from wearable sensors. Cano et al. [4] applied ma-
chine learning to electrocardiograms (ECGs) and photo-
plethysmograms (PPGs) to screen individuals for high BP.
Our prior work [5] used graph convolution neural network
to detect high BP from ECGs and respiration; our study
showed that music listening (compared to silence) signifi-
cantly improved hypertension detection accuracy.

Detection of systolic BP and diastolic BP has also been
achieved from wearable sensors, although evaluations dis-
agree about their accuracy [6, 7]. The effect of music on
SBP and DBP prediction using physiological signals has
not been studied. Here, we investigate SBP and DBP pre-
diction from ECG and respiration signals using the graph
attention network (GAT), a deep learning technique, in the
presence and absence of music. The advantage of the GAT
over the GCNN is the weighting of network edges [8]. Sec-
tion 2 describes the steps involved, followed by results in
Section 3 and discussion and conclusions in Section 4.

2. Methodology

This pilot study utilized data collected in the HeartFM
project [9]. The HeartFM study was designed in accor-
dance with the ethical guidelines of the 1975 Declaration
of Helsinki. Ethical approval was granted by the Oxford
C Research Ethics Committee of the UK Health Research
Authorities (IRAS 242471) and the Research Ethics Office
at King’s College London (minimal risk registration num-
ber: MRPP-22/23-34904). A schematic diagram for the
current study is shown in Figure 1. This study used data
from 50 (38 females) participants collected over a period
of eight months. Table 1 shows the demographic details.

Participants listened to Western Classical music ren-
dered on a reproducing grand piano, a Bösendorfer VC280
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Figure 1. Schematic diagram showing steps involved in deriving BP values from ECG and respiration signals in the
presence of music.

Enspire PRO. Participants ranged from 18 to 65 years old;
those on beta blockers or having cognitive and/or hear-
ing abnormalities were excluded from the study. Informed
consent was obtained from all participants. Whilst partic-
ipants listened to the music and during an initial 5-minute
baseline silence, their BP was measured using a CNAP
sensor (CN Systems, Graz, Austria)—the SBP and DBP
readings from the CNAP were considered the gold stan-
dard. Participants’ ECG were collected with a Polar H10
heart rate sensor (Polar Electro Oy, Kempele, Finland)
and respiratory signals using a BIOPAC respiration belt
(BIOPAC Systems, Goleta, USA) via the HeartFM mobile
app. Later, physiological signals - ECG and respiratory
signals were processed for signal feature extraction.

Table 1. Demographics of the study.

Parameters Unit Individuals
Gender F/M 38/12
Age years 46± 5.7
Height cm 160± 5.7
SBP mmHg 144± 1.41
DBP mmHg 77.5± 12.12

2.1. Signal Pre-Processing

Pre-processing of the ECG signal utilized a 2nd order
Butterworth band-pass filter with range 0.2-500 Hz and
sampling frequency 1 kHz. The respiratory signals were

filtered with a 4th order Butterworth filter and sampling
frequency 30 Hz. After pre-processing, features were ex-
tracted from the acquired signals. The seven time do-
main features extracted from the ECG signals were the
ST, QT, PR, RR, RT, QS, and RS intervals. The seven
frequency domain features extracted from the respiratory
signal were the envelope, band power, bandwidth, maxi-
mum power, peak power, maximum frequency, and mini-
mum frequency. Music signals were processed to give the
four features of loudness, tempo, MFCC, and note density.
After extraction, all the features were integrated into the
GAT classification network. The physiological signal fea-
tures formed the node values of the GAT. The edge values
were given by the music features.

2.2. Graph Attention Network (GAT)

The GAT comprised of 50 nodes representing individu-
als, with edges connecting participants who heard the same
music track. The 14 values of each node comprised of
the ECG and respiration features. Hence, the network was
made of 14×50 nodes and 2×81 edges. To evaluate the pre-
dictability of the proposed method, the GAT was mapped
to 1×7 actual SBP and DBP values. The principle of multi-
head attention [10] using the edge features as the weight
attributes was used in this GAT. This attention mechanism
prioritised those nodes which ultimately help in predicting
BP values, thus upgrading the GAT’s forecasting ability.

The hyperparameters used in this GAT had 40 hidden
layers, the learning rate was 0.001, and the number of
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Figure 2. Loss curves for prediction of DBP using ECG
and respiration signals with and without music.

epochs was 500. We used the AdamW as an optimizer
and the ReLU as the non-linearity function. Two convo-
lution layers were used in the formation of the GAT. Net-
work computations were done via a computer program in
Python 3.99 and was implemented in Google Colab with
Tensor and PyTorch.

3. Results

The GAT’s ability to predict SBP and DBP values based
on the physiological signals (ECG and respiration) in the
presence of music was assessed with regression values,
mean absolute error (MAE), and root mean squared error
(RMSE). The regression value was 0.64 (SBP) and 0.61
(DBP), in presence of music, vs. 0.39 (SBP) and 0.36
(DBP) during silence. Table 2 presents the results. For BP
predictions during music, the MAE was 2.78 (SBP) and
3.58 (DBP), and RMSE ±3.01 (SBP) and ±3.59 (DBP).

Table 2. Regression values for prediction of BP.

SBP DBP
Music 0.64 0.61
No Music 0.39 0.36

Comparative study was also performed using the loss
curves of mean squared error (MSE) vs epoch for the GAT
predictions with and without music features as shown in
Figures 3 for SBP and Figure 2 for DBP. The graphs in Fig-
ures 3 (SBP) and 2 (DBP) show lower MSE during music,
with the gap increasing with epoch.

Figure 3. Loss curves for prediction of SBP using ECG
and respiration signals with and without music.

4. Discussion and Conclusion

The results provide evidence of the importance of mu-
sic in discriminating between human physiology under dif-
ferent BP. Using the GAT method, SBP and DBP predic-
tion was possible with ECG and respiration signal fea-
tures along with music features. Our comparative study
shows the benefit of evaluating BP from physiological sig-
nals during music listening in contrast to that during the
baseline silence.

The results suggest that the impact of music on the car-
diovascular system enhances the difference between gra-
dations of blood pressure for both SBP and DBP. Adding
music listening information and features to the model re-
duced the MAE (mean absolute error) by 29.3%, showing
that changes to physiology during music engagement en-
hanced the BP prediction, which in turn improves hyper-
tension diagnostic accuracy.

To our knowledge, this is the first demonstration of
music-based assessment of SBP and DBP from physiolog-
ical signals. Providing accurate and more granular BP pre-
dictions through music listening is a step towards precision
medicine for hypertension.
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